(0) Obligation:

Runtime Complexity TRS:
The TRS R consists of the following rules:

badd(x', Cons(x, xs)) → badd(Cons(Nil, Nil), badd(x', xs))
badd(x, Nil) → x
goal(x, y) → badd(x, y)

Rewrite Strategy: INNERMOST

(1) RenamingProof (EQUIVALENT transformation)

Renamed function symbols to avoid clashes with predefined symbol.

(2) Obligation:

Runtime Complexity Relative TRS:
The TRS R consists of the following rules:

badd(x', Cons(x, xs)) → badd(Cons(Nil, Nil), badd(x', xs))
badd(x, Nil) → x
goal(x, y) → badd(x, y)

S is empty.
Rewrite Strategy: INNERMOST

(3) SlicingProof (LOWER BOUND(ID) transformation)

Sliced the following arguments:
Cons/0

(4) Obligation:

Runtime Complexity Relative TRS:
The TRS R consists of the following rules:

badd(x', Cons(xs)) → badd(Cons(Nil), badd(x', xs))
badd(x, Nil) → x
goal(x, y) → badd(x, y)

S is empty.
Rewrite Strategy: INNERMOST

(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)

Infered types.

(6) Obligation:

Innermost TRS:
Rules:
badd(x', Cons(xs)) → badd(Cons(Nil), badd(x', xs))
badd(x, Nil) → x
goal(x, y) → badd(x, y)

Types:
badd :: Cons:Nil → Cons:Nil → Cons:Nil
Cons :: Cons:Nil → Cons:Nil
Nil :: Cons:Nil
goal :: Cons:Nil → Cons:Nil → Cons:Nil
hole_Cons:Nil1_0 :: Cons:Nil
gen_Cons:Nil2_0 :: Nat → Cons:Nil

(7) OrderProof (LOWER BOUND(ID) transformation)

Heuristically decided to analyse the following defined symbols:
badd

(8) Obligation:

Innermost TRS:
Rules:
badd(x', Cons(xs)) → badd(Cons(Nil), badd(x', xs))
badd(x, Nil) → x
goal(x, y) → badd(x, y)

Types:
badd :: Cons:Nil → Cons:Nil → Cons:Nil
Cons :: Cons:Nil → Cons:Nil
Nil :: Cons:Nil
goal :: Cons:Nil → Cons:Nil → Cons:Nil
hole_Cons:Nil1_0 :: Cons:Nil
gen_Cons:Nil2_0 :: Nat → Cons:Nil

Generator Equations:
gen_Cons:Nil2_0(0) ⇔ Nil
gen_Cons:Nil2_0(+(x, 1)) ⇔ Cons(gen_Cons:Nil2_0(x))

The following defined symbols remain to be analysed:
badd

(9) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
badd(gen_Cons:Nil2_0(a), gen_Cons:Nil2_0(+(1, n4_0))) → *3_0, rt ∈ Ω(n40)

Induction Base:
badd(gen_Cons:Nil2_0(a), gen_Cons:Nil2_0(+(1, 0)))

Induction Step:
badd(gen_Cons:Nil2_0(a), gen_Cons:Nil2_0(+(1, +(n4_0, 1)))) →RΩ(1)
badd(Cons(Nil), badd(gen_Cons:Nil2_0(a), gen_Cons:Nil2_0(+(1, n4_0)))) →IH
badd(Cons(Nil), *3_0)

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

(10) Complex Obligation (BEST)

(11) Obligation:

Innermost TRS:
Rules:
badd(x', Cons(xs)) → badd(Cons(Nil), badd(x', xs))
badd(x, Nil) → x
goal(x, y) → badd(x, y)

Types:
badd :: Cons:Nil → Cons:Nil → Cons:Nil
Cons :: Cons:Nil → Cons:Nil
Nil :: Cons:Nil
goal :: Cons:Nil → Cons:Nil → Cons:Nil
hole_Cons:Nil1_0 :: Cons:Nil
gen_Cons:Nil2_0 :: Nat → Cons:Nil

Lemmas:
badd(gen_Cons:Nil2_0(a), gen_Cons:Nil2_0(+(1, n4_0))) → *3_0, rt ∈ Ω(n40)

Generator Equations:
gen_Cons:Nil2_0(0) ⇔ Nil
gen_Cons:Nil2_0(+(x, 1)) ⇔ Cons(gen_Cons:Nil2_0(x))

No more defined symbols left to analyse.

(12) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
badd(gen_Cons:Nil2_0(a), gen_Cons:Nil2_0(+(1, n4_0))) → *3_0, rt ∈ Ω(n40)

(13) BOUNDS(n^1, INF)

(14) Obligation:

Innermost TRS:
Rules:
badd(x', Cons(xs)) → badd(Cons(Nil), badd(x', xs))
badd(x, Nil) → x
goal(x, y) → badd(x, y)

Types:
badd :: Cons:Nil → Cons:Nil → Cons:Nil
Cons :: Cons:Nil → Cons:Nil
Nil :: Cons:Nil
goal :: Cons:Nil → Cons:Nil → Cons:Nil
hole_Cons:Nil1_0 :: Cons:Nil
gen_Cons:Nil2_0 :: Nat → Cons:Nil

Lemmas:
badd(gen_Cons:Nil2_0(a), gen_Cons:Nil2_0(+(1, n4_0))) → *3_0, rt ∈ Ω(n40)

Generator Equations:
gen_Cons:Nil2_0(0) ⇔ Nil
gen_Cons:Nil2_0(+(x, 1)) ⇔ Cons(gen_Cons:Nil2_0(x))

No more defined symbols left to analyse.

(15) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
badd(gen_Cons:Nil2_0(a), gen_Cons:Nil2_0(+(1, n4_0))) → *3_0, rt ∈ Ω(n40)

(16) BOUNDS(n^1, INF)