(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
badd(x', Cons(x, xs)) → badd(Cons(Nil, Nil), badd(x', xs))
badd(x, Nil) → x
goal(x, y) → badd(x, y)
Rewrite Strategy: INNERMOST
(1) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(2) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
badd(x', Cons(x, xs)) → badd(Cons(Nil, Nil), badd(x', xs))
badd(x, Nil) → x
goal(x, y) → badd(x, y)
S is empty.
Rewrite Strategy: INNERMOST
(3) SlicingProof (LOWER BOUND(ID) transformation)
Sliced the following arguments:
Cons/0
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
badd(x', Cons(xs)) → badd(Cons(Nil), badd(x', xs))
badd(x, Nil) → x
goal(x, y) → badd(x, y)
S is empty.
Rewrite Strategy: INNERMOST
(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(6) Obligation:
Innermost TRS:
Rules:
badd(x', Cons(xs)) → badd(Cons(Nil), badd(x', xs))
badd(x, Nil) → x
goal(x, y) → badd(x, y)
Types:
badd :: Cons:Nil → Cons:Nil → Cons:Nil
Cons :: Cons:Nil → Cons:Nil
Nil :: Cons:Nil
goal :: Cons:Nil → Cons:Nil → Cons:Nil
hole_Cons:Nil1_0 :: Cons:Nil
gen_Cons:Nil2_0 :: Nat → Cons:Nil
(7) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
badd
(8) Obligation:
Innermost TRS:
Rules:
badd(
x',
Cons(
xs)) →
badd(
Cons(
Nil),
badd(
x',
xs))
badd(
x,
Nil) →
xgoal(
x,
y) →
badd(
x,
y)
Types:
badd :: Cons:Nil → Cons:Nil → Cons:Nil
Cons :: Cons:Nil → Cons:Nil
Nil :: Cons:Nil
goal :: Cons:Nil → Cons:Nil → Cons:Nil
hole_Cons:Nil1_0 :: Cons:Nil
gen_Cons:Nil2_0 :: Nat → Cons:Nil
Generator Equations:
gen_Cons:Nil2_0(0) ⇔ Nil
gen_Cons:Nil2_0(+(x, 1)) ⇔ Cons(gen_Cons:Nil2_0(x))
The following defined symbols remain to be analysed:
badd
(9) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
badd(
gen_Cons:Nil2_0(
a),
gen_Cons:Nil2_0(
+(
1,
n4_0))) →
*3_0, rt ∈ Ω(n4
0)
Induction Base:
badd(gen_Cons:Nil2_0(a), gen_Cons:Nil2_0(+(1, 0)))
Induction Step:
badd(gen_Cons:Nil2_0(a), gen_Cons:Nil2_0(+(1, +(n4_0, 1)))) →RΩ(1)
badd(Cons(Nil), badd(gen_Cons:Nil2_0(a), gen_Cons:Nil2_0(+(1, n4_0)))) →IH
badd(Cons(Nil), *3_0)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(10) Complex Obligation (BEST)
(11) Obligation:
Innermost TRS:
Rules:
badd(
x',
Cons(
xs)) →
badd(
Cons(
Nil),
badd(
x',
xs))
badd(
x,
Nil) →
xgoal(
x,
y) →
badd(
x,
y)
Types:
badd :: Cons:Nil → Cons:Nil → Cons:Nil
Cons :: Cons:Nil → Cons:Nil
Nil :: Cons:Nil
goal :: Cons:Nil → Cons:Nil → Cons:Nil
hole_Cons:Nil1_0 :: Cons:Nil
gen_Cons:Nil2_0 :: Nat → Cons:Nil
Lemmas:
badd(gen_Cons:Nil2_0(a), gen_Cons:Nil2_0(+(1, n4_0))) → *3_0, rt ∈ Ω(n40)
Generator Equations:
gen_Cons:Nil2_0(0) ⇔ Nil
gen_Cons:Nil2_0(+(x, 1)) ⇔ Cons(gen_Cons:Nil2_0(x))
No more defined symbols left to analyse.
(12) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
badd(gen_Cons:Nil2_0(a), gen_Cons:Nil2_0(+(1, n4_0))) → *3_0, rt ∈ Ω(n40)
(13) BOUNDS(n^1, INF)
(14) Obligation:
Innermost TRS:
Rules:
badd(
x',
Cons(
xs)) →
badd(
Cons(
Nil),
badd(
x',
xs))
badd(
x,
Nil) →
xgoal(
x,
y) →
badd(
x,
y)
Types:
badd :: Cons:Nil → Cons:Nil → Cons:Nil
Cons :: Cons:Nil → Cons:Nil
Nil :: Cons:Nil
goal :: Cons:Nil → Cons:Nil → Cons:Nil
hole_Cons:Nil1_0 :: Cons:Nil
gen_Cons:Nil2_0 :: Nat → Cons:Nil
Lemmas:
badd(gen_Cons:Nil2_0(a), gen_Cons:Nil2_0(+(1, n4_0))) → *3_0, rt ∈ Ω(n40)
Generator Equations:
gen_Cons:Nil2_0(0) ⇔ Nil
gen_Cons:Nil2_0(+(x, 1)) ⇔ Cons(gen_Cons:Nil2_0(x))
No more defined symbols left to analyse.
(15) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
badd(gen_Cons:Nil2_0(a), gen_Cons:Nil2_0(+(1, n4_0))) → *3_0, rt ∈ Ω(n40)
(16) BOUNDS(n^1, INF)